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Tiling the plane with noncongruent toric focal conic domains

Christophe Blanc* and Maurice Kleman
Laboratoire de Mine´ralogie-Cristallographie de Paris, CNRS UMR No. 7590, T16 case 115, Universite´ Pierre et Marie Curie,

4 Place Jussieu, F-75252 Paris Cedex 05, France
~Received 27 May 2000!

This paper deals with regular arrays of macroscopic defects~focal conic domains! observed when a slab of
lamellar phase is sandwiched between two substrates imposing differentorientationalanchorings. We report,
in particular, detailed observations of the texture of a lyotropic lamellar phase in contact with a glass substrate
and a lyotropic sponge phase. We consider several models for the defects depending on the material and the
substrate parameters. Their energy has a common form, and the main features of the textures are explained in
the framework of a simple model where disks of different sizes tile a plane in order to minimize a particular
interface energy.

PACS number~s!: 61.30.Jf, 68.10.Cr
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I. INTRODUCTION

Lamellar liquid crystal phases, which consist of a perio
stack of parallel surfaces, occur in different materials such
thermotropic liquid crystals or surfactant-solvent mixture
On a large scale, they share some common behaviors w
are related to their one-dimensional crystal nature, and no
their specific microscopic structure. This is particularly r
vealing when macroscopic defects are involved. For
ample, focal conics domains~FCD’s!, which are made of
parallel layers folded along Dupin cyclides@1,2#, are the
classic macroscopic defects of the thermotropic smectA
(SmA) materials, but are also observed in the lamellarLa
lyotropic phases@3–5#.

FCD’s are often unstable defects, frozen in a sme
sample during its preparation, and they disappear when
sample is annealed. In confined lamellar phases, howe
the macroscopic defects are necessarily present in orde
satisfy different anchorings at the interfaces. One of the m
spectacular illustration of this phenomenon is the format
of regular lattices of TFCD’s~toric focal conics domains! in
a thin slab of SmA material sandwiched between its isotrop
melt and the air~Fig. 1!.

These lattices were first reported at the beginning of
last century by Friedel@1#, but their appearance was acc
rately studied only much later@6–8#. The antagonistic
boundary conditions—parallel anchoring of the layers at
SmA-air interface vs perpendicular orientation at t
isotropic-SmA interface~see Fig. 2!—are the driving force of
a texture instability which appears above a critical thickne
A transition is indeed observed between a homeotropic
ometry, where the orientation of the layers is imposed by
air, and the nucleation of defects when the thickness of
smectic sample increases. The defects are TFCD’s, w
display a singular line along their axis of revolution and
quasivirtual singular circle, sitting at the SmA-isotropic in-
terface~see Fig. 2!.

Apart from the study of the nucleation of isolated defec
several factors have limited a further study of the equilibriu
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textures. Due to the strong first-order character of the tra
tion, hysteretic phenomena are indeed present, and the
tures are not perfectly reproducible above the critical thi
ness in the thermotropic liquid crystals which have been u
@6#. Moreover, from a theoretical viewpoint, the models bu
so far deal only with isolated defects, whereas the patte
formed by these defects have not been studied. Howeve
should be noted that several theoretical models in the
considered the tiling of a plane with focal conic domain
The most popular model is the Apollonius tiling~see Fig. 3!,
where small TFCD’s~represented here by their singul
circle! iteratively fill the interstices between larger ones. Th
model is clearly not fit to explain the regular lattices th
have been observed.

Similar arrays of defects~see Fig. 4! were recently re-
ported @9# in a lyotropic lamellar system sandwiched b
tween a glass substrate and a sponge phase~the isotropic
sponge phase is also a phase of membranes, but is us
described by a single disordered and multiply connec
membrane which divides the solvent into two equivale
subvolumes; see details in Refs.@10–14#!. The appearance o
defects in a slab of lamellar phase is also due to the com

FIG. 1. A thin slab of SmA phase between air and its isotrop
melt is unstable toward the formation of macroscopic defects. T
micrograph was obtained with the thermotropic liquid crystal 48
diethyl azoxydibenzoate, which undergoes a smectic-to-isotro
transition at 120 °C. Bar is approximately equal to 20mm.
6739 ©2000 The American Physical Society
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6740 PRE 62CHRISTOPHE BLANC AND MAURICE KLEMAN
tition between different anchorings at the glass/La interface
and at theLa/L3 interface. The layers are parallel to the gla
substrates whereas they are strongly tilted at an angleu0 near
the L3 phase. Contrary to the thermotropic case, hexago
lattices of defects observed just above a critical thickness
reproducible. In a recent paper@15# we proposed a simple
model which explains the observed quantitative evolution
the defect lattice parameter with the thickness of the lame
slab. The aim of the present paper is, first, to extend
model to thick slabs and to different experimental situatio
and, second, to discuss the observed textures on a
larger than one defect. In particular, we show that our mo
predicts the disappearance of a hexagonal lattice abo
second critical thickness, and the appearance of other
terns.

The paper is structured as follows. In Sec. II, we pres

FIG. 2. Geometric model of the macroscopic defects of Fig
proposed by J.-B. Fournier, I. Dozov, and G. Durand, Phys. Rev
41, 2252~1990!. The layers are part of a toric focal conics doma
~TFCD! and the singular lines consist of a straight line~along the
axis of revolution! and a circle sitting on the isotropic SmA inter-
face. Note that a small depression is expected at the air-SmA inter-
face.

FIG. 3. The Apollonius tiling consists of packed circles that
the plane iteratively. Such a model can be used to propose a te
made of toric focal conics domains which ensures a planar anc
ing everywhere at the isotropic-SmA interface.
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experimental observations of lamellar textures confined
tween the sponge phase and the glass substrate, and
that the simple hexagonal lattice is an equilibrium pattern
small thicknesses, whereas other textures appear at la
thicknesses. In Sec. III, we consider the most common
perimental situations for a confined smectic slab, and sh
that the free energy of a single defect has the same form.
also show that the main experimental features of the lat
are explained by the minimization of a particular interfa
energy. In Sec. IV we then discuss the dynamics of the
fects and textures.

II. OPTICAL MICROSCOPY OBSERVATIONS

A. Experimental system

The system which has been studied is a mixture
cetylpyridinium chloride~CPCl!, hexanol and solvent~water
with 1 wt. % of NaCl!. For the brine weight fractionfw
50.7, the domain of coexistence between theL3 and La
phases is found for a weight ratio of hexanol over CPClh/c
between 1.05 and 1.11.

A thin slab of lamellar phase confined between the spo
phase and the lamellar phase is submitted to two differ
anchorings@15#. The glass gives a homeotropic orientatio
whereas the layers are strongly tilted at theLa /L3 interface
with an angleu0 close to 70° for this dilution@9#. The sys-
tem responds to this frustration by the formation of defec

The experimental formation of theLa slab can be ob-
tained in two different ways. First@15#, we used the fact tha
the L3 phase changes to the lamellar phase when increa
the temperature. A sample of theL3 phase at room tempera
ture (h/c'1.115– 1.120) is introduced in a glass capilla
~Vitrodynamics, thickness 200, 300, or 400mm! which is
sealed by the flame. The sample is heated in the domai
coexistence (T'40 °C). When the rate of temperature in
crease is small enough~below 0.1– 0.2 °C min21) the lamel-
lar phase grows slowly from the glass substrate but does
appear in the bulk in the form of nuclei. Above a critic
thicknesshc,1 , a hexagonal lattice of defect appears~see Fig.
4!. Due to the slow growth of the lamellar phase, organiz

1
A

re
r-

FIG. 4. A thin slab of lamellar phase sandwiched between g
and sponge phases displays an hexagonal array of defects~thickness
is approximately equal to 100mm, and bar to 20mm!.
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PRE 62 6741TILING THE PLANE WITH NONCONGRUENT TORIC . . .
domains are observed on a large scale~typical size>1 mm;
see further details in Ref.@15#!.

In the second method, either we prepare the sample
domain of coexistence at room temperature (h/c between
1.05 and 1.11!, or we quickly bring anL3 sample (h/c
'1.11– 1.12) into the domain of coexistence. The t
phases, in both cases, are initially mixed in the bulk, but th
separate slowly in a few hours. TheLa phase has a lowe
density, and settles on the upper glass substrate. Note tha
have also used homemade cells in order to obtain thickne
up to a few millimeters. These cells consist in pierced slid
of Plexiglass in which we confine the sample by covering
with a cover glass. This latter is glued in order to avoid t
evaporation of the sample. The samples prepared in th
different ways are observed under an optical polarizing
croscope Leitz~DMRXP! equipped with a hot stage~Mettler
82HT!, a movie camera, and a movie recorder.

B. Observations

1. Defects of the regular lattices

We previously reported experimental observations of
appearance of hexagonal lattices~HL’s! in thin slabs of
lamellar phase~thicknessh<200mm!, and the existence of a
critical thicknesshc,1'35– 40mm below which the orienta-
tion of the layers is homeotropic and imposed by the gla
Although the instability is also driven by two different an
chorings at the interfaces, the texture is somewhat diffe
from Fig. 2. The glass is indeed far more rigid than theLa
layers, and no depression is observed~see Fig. 5!. On the
other hand, we have demonstrated the presence of a cu
ture wall that separates a homeotropic region and the de
itself. The side views of the defects@15# have shown that the
shape of the wall is nearly conical, as drawn in Fig. 5.

The lattices of Ref.@15# were obtained by a slow growt
process. In order to study their stability, we have chec
that they are also formed by the second method, where

FIG. 5. The layers of the lamellar phase cannot satisfy both
homeotropic anchoring on the glass substrate and the tilt ang
the lamellar-sponge interface. A small-angle curvature wall is
perimentally observed. The curvature wall has an exact cone sh
and the two strong boundary conditions are satisfied everyw
inside the defects.
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slab is obtained from the contact of the lamellar nuclei w
the glass. The observed textures are characterized by
presence of large single-crystals of defects~see Fig. 6! sepa-
rated by grain boundaries. This shows that the hexago
lattice is not only obtained by a slow growth process, b
formed from the nuclei of lamellar phase in contact with t
glass. It should be noted that defects in the grain bounda
are often more visible than other defects. The size of a de
indeed depends on the local organization. Figure 7 sh
that the size of a defect depends strongly of the number o
neighbors. We have circled the two largest and smallest
fects present in the micrograph. The respective number
their neighbors are 7 and 5, i.e., the observed defect is it
a defect~disclination! of the hexagonal array. In the follow
ing we shall use ‘‘defect’’ to describe elements of the tilin
whether the considered defect belongs to a perfect arra
not. We have also circled an empty interstice which is n

e
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-

pe,
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FIG. 6. Hexagonal lattice obtained in a thin slab (h'65 mm! of
La phase. Note that the picture is not perfectly focused in orde
make the defects more visible. Each white spot is a single TF
Bar 100mm.

FIG. 7. In a grain boundary, the local hexagonal arrangemen
the defects is not present everywhere. The size of the defects
pends strongly of the local organization. Bar 50mm.
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6742 PRE 62CHRISTOPHE BLANC AND MAURICE KLEMAN
filled by a defect. For each thickness there exists a mini
radius below which an empty interstice is not filled, that
the minimal size of the defects here is much larger than
size of the interstices of the HL. Note eventually that th
behavior is strongly reminiscent of defects present in
lattices of magnetic bubbles observed in thin magnetic m
terials submitted to a magnetic field@16#.

2. Thicker slabs

The regular lattice HL is no longer observed above
other critical thicknesshc,2'200– 300mm. Even after a few
days at rest, the texture does not feature a perfect hexag
lattice, but rather exhibits a broad distribution of the size
the defects as shown in Fig. 8. We give a histogram of
micrograph in Fig. 9, which nevertheless shows that t
different sizes are present in the texture. The first is the c
acteristic size of the largest defects which are the most
ible in Fig. 8. The second is the size of the smallest defe
which fill the interstices between the largest ones. The

FIG. 8. A typical texture observed abovehc,2 exhibits a large
distribution of sizes~plotted in Fig. 9!. Note, however, that a hex
agonal lattice can be observed locally~top left!. Bar 100 mm.
Thicknessh'900 mm.

FIG. 9. Histogram of the defects observed in Fig. 8, wherev is
the ratio between the radiusa of a defect, andh5900 mm is the
thickness of the sample. We have represented the distributio
sizes and the distribution of the area covered by the defects.
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types of defects are perfectly visible in the local hexago
lattices HL1 which are observed locally~for example in the
top left corner of Fig. 8!. The two different sizes shown in
Fig. 10 are then well defined, since the packing of the lar
defects gives the sizes of the second generation of defec
close contact.

The study of the local hexagonal arrangement give
third critical thicknesshc,3'800– 1000mm, above which
three different sizes of defects are present in the local lat
HL2 ~see Figs. 11 and 12! which replaces HL1. The thickness
hc,3 is poorly defined because the appearance of a third g
eration of defects does not occur at the same time. We s
this phenomenon in Fig. 13, where we mark the defects
the third generation appearing in a local HL1.

In conclusion, the hexagonal lattice seems to be an e
librium texture, but only for small thicknesses abovehc,1 .

of

FIG. 10. Local hexagonal lattice with two different sizes
defects. The smaller ones fill the interstices between the larger o
We have subtracted a part of the background to the micrograp
order to make the contacts between defects more visible. Thick
780 mm. Bar 100mm.

FIG. 11. Above the thicknesshc,3 , the local hexagonal arrange
ment is made of three types of defects which are the first step
the Apollonius tiling. In Fig. 12 we give a magnification of th
arrangement of the interstices.
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PRE 62 6743TILING THE PLANE WITH NONCONGRUENT TORIC . . .
Moreover, we have noted that the size of the defects is
unique but depends on the local organization in the gr
boundaries. A second critical thicknesshc,2 is observed when
the HL disappears, and is replaced by a more disorde
texture. A regular lattice HL1 with two sizes of defects is
nevertheless observed locally, and is replaced at a t
thicknesshc,3 by the lattice HL2 in which three different
types of defects form the first stages of the Apollonius tilin

III. THEORETICAL APPROACH

A. Different types of defects

Consider the defects represented in Figs. 2 and 5. T
appear in the smectic slab in order to permit a planar anc
ing ~or a strongly oblique one at an angleu0 close top/2) at
the lower interface, whereas the anchoring remains hom
tropic at the upper interface. It is obvious that the clas

FIG. 12. Local arrangement of the two smallest types of defe
in the lattice HL2 of Fig. 11. Bar 20mm.

FIG. 13. The appearance of a new generation of defects oc
for a large range of thicknesses. For example, this micrograph
resents a local HL1 in which some defects of the third generatio
have appeared~their position is given by the black marks!. Bar 100
mm. Thickness 910mm.
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‘‘geometric approximation’’~in which the smectic layering
remains parallel! is not compatible with a flat upper inter
face. In the model proposed by Fournieret al. @6#, each de-
fect carries a small depression at the air-SmA interface, and
therefore a slight increase of energy of this interface. In
lyotropic defects, there is no depression but a curvature w
is present, which confines some dilation in the wall. If t
homeotropic anchoring were much weaker, another sim
model should be considered where the anchoring slig
departs from homeotropy at the upper interface and avo
the dilation in the smectic sample~see Fig. 14!. Since the
aspect ratioa/h is usually small (v,0.2 rad in the experi-
ments reported in Sec. II!, we will now use a5tanvh
'vh, wherev is the angle defined in the three figures. In
cases, the total free energy of one defect appearing in a
nar slab splits into three parts~see Ref.@15# for a discussion
of the approximations used!.

~i! An energy gain at the lower interfaceEI52Dspa2

due to the change of orientation of the layers, whereDs
.0 is the difference between the interface energy of
homeotropic orientation and the interface energy at the an
u0.

~ii ! An energy penaltyEc due to the curvature of the
layers within the defect. Sincev is so small, this contribu-
tion is of the order of the energy of a semi-infinite TFCD
and its main term isEc5apKa, where K is the smectic
bending modulus of the layers anda a numerical factor of
order 20–30.

~iii ! A saturation@17# term Es due to the presence of th
depression, the curvature wall or the departure from the
meotropic anchoring. In the first case, the increase of in
face energy of the upper interface is

Es5SE
w50

v

2p~a2h sinw!hdw2Spa2'
ph2Sv4

12
,

~1!

whereS is the free interface energy of the upper interfac
For the lyotropic system of Sec. II, the energy penalty is d
to the curvature wall of energy per unit area 2Kv3/3l,
wherel is the smectic penetration length@15#. The satura-
tion term is therefore

ts

rs
p-

FIG. 14. Model of a TFCD in a SmA phase confined betwee
two flat interfaces with a weak anchoring at theM1-SmA interface.
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6744 PRE 62CHRISTOPHE BLANC AND MAURICE KLEMAN
Es5
2pKv4h2

3l
. ~2!

For the case of a weaker anchoring, the increase of are
the upper interface or the dilation of the layers are avoid
by a departure of the homeotropic anchoring. LetW(w) be
the energy by unit area of the upper interface when the la
are tilted at a small anglew ~see Fig. 14!. The expansion of
W(w) about its minimum w50 yields W(w)'W0
1(]2W/]w2)u0(w2/2), andEs is given by

Es5E
w50

v

2ph~ tanv2tanw!W~w!d~h tanw!2W0pa2

'

ph2v4
]2W

]w2 U
0

12
. ~3!

The resulting energy of anisolated defectin units of
a2pKl can therefore be written as

Et~x,v!52Fx2v21xv1F1x2v4, ~4!

whereF5Dsl/K, x5h/al is the dimensionless thicknes
of the slab andF15Sl/12K, 2/3, or (]2W/]w2)l/12K ac-
cording to the relevant model. In the following graphs, w
will use the values obtained from Ref.@15#: F50.065, F1
52/3, andal50.3 mm. The variation of the energyEt of an
isolated defect with the thickness and the anglev is shown
in Fig. 15. There exists a critical thicknessxc,1 (xc,1'128 for
the La slab considered here!, below which a defect has
positive energy and is unstable, whereas a range of pos
sizes corresponding to negative values of the energy oc
in thicker samples.

Note eventually that the final expression given in Eq.~4!
is not a Taylor expansion of the free energy according tov,
since we have retained only the leading term of each so
of energy. However, since we consider cases in which th
terms compete, each remaining term is much smaller t
the leading term of Eq.~4!, and the energy is well approxi
mated by this polynomial expression, as detailed in the A
pendix.

FIG. 15. Variation of the energy of an isolated defect with t
geometrical parameterv for different thicknessesx (x550, 128,
and 200!. A defect is stable only above the thicknesshc,15xc,1al.
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B. Properties of the packings of defects

We showed in Ref.@15# that the variation with thickness
of the size of the defects in the hexagonal lattice is comp
ible with such an expression of the energy, but we did
consider different arrangements of the defects. We now
sume that the experimental observations reported in Se
reflect the minimization of the total free energy of the pac
ings of defects. We establish some properties of the pack
in the frame of such a hypothesis.

Consider an assemblyDi of defects represented by the
singular circle at the lower interface~see Fig. 16!. The total
energy of the texture defines an interface energySe ,

Se~$Di%!5

(Di

Et~x,v i !

S~$Di%!
, ~5!

when the total areaS($Di%) of the texture is much large
than the size of one defect. Note that this area is not only
total area of the disks but also includes the interstices. N
consider a single defect of this texture. If it has a rad
lower thanxvmin ~see Fig. 15!, its energy is positive. Its
disappearance therefore decreasesSe . On the other hand, if
its radius is larger thanxvmax wherevmax is the minimum of
Et(x,v), a texture of smaller energy is obtained when d
creasing its size toxvmax without disturbing the surrounding
disks.

The size of a defect in a texture is therefore in the ran
D5@vmin ,vmax# which is shown in Fig. 17. The boundarie

FIG. 16. Since two defects do not intersect in the bulk, t
smectic texture of the slabs is represented by a packing of disk
different sizes in the plane.

FIG. 17. RangeD of the possible sizes of the defects as a fun
tion of the thicknessx.
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of D are given by

Et~x,vmin!50, ~6!

vmin~x!522A F

3F1

3cosS 2p

3
1

arctanS 2A4F3x2

27F1
21D

3
D ,

vmin~x→`!'
1

Fx
~7!

and

Et8~x,vmax!50,
~8!

vmax~x!5A 2F

3F1
cosS p

3
1

arctanS 2A8F3x2

27F1
21D

3
D ,

vmax~x→`!'A 2F

3F1
cos

p

6
. ~9!

It should be noted that the range of acceptable sizes incre
rapidly abovexc,1 , in contrast to the fact that the regula
hexagonal lattices are observed at least up toh'200 mm
~that is,x'700).

It will be useful to define the energy per unit area of o
defect by

se~x,v!5
Et~x,v!

px2v2
52

F

p
1

1

pxv
1

F1v2

p
. ~10!

The interface energySe of a given texture can therefore b
expressed as

Se~$Di%!5

(D i

px2v i
2se~x,v i !

S~Di !
. ~11!

Now, consider a given arrangement$Di% of the disks. It is
stable if the homogeneous dilation of the disks by a factog
increases the energy,

Se~g!5

(D i

px2g2v i
2se~x,gv i !

g2S~Di !
, ~12!

which implies that a stable packing verifies

(Di

v i
3 ]se~x,v i !

]v
50. ~13!

This equation will give us the size of the defects in t
texture of minimal energy for a given arrangement. It mak
sense to compute this sum on an unit cell when the textu
a regular lattice.
ses

s
is

C. Texture of the thin slabs

As shown above,D is reduced to a single value only fo
the thicknessxc,1 . The HL is in this case the most compa
arrangement of the disks, and therefore minimizesSe . This
geometrical argument can be extended for thicker sample
lower boundary ofSe is indeed given by

Se>d~$Di%!min
vPD

se~v!, ~14!

whered($Di%) is the area fraction occupied by the disks. T
exact largest value taken byd($Di%) for noncongruent disks
is known when the ratio of smallest over largest admissi
radii is not too small@18#. For vmin /vmaxP@0.743 . . . ,1#,
the densest packing is indeed a hexagonal lattice of disk
same size for whichd($Di%)5p/A12'0.907. Therefore,
Eq. ~14! becomes an equality for an hexagonal packing
disks with radiusxv0 wherese8(v0)50, that is

v0~x!5A3 1

2F1x
. ~15!

In Ref. @15#, we considered only the existence of hexago
lattices, and obtained this law, which was in rather go
agreement with the experimental data.

Finally, also note that this approach also explains why
size of the defects in a grain boundary deviate from the
timal size of a defect in a HL. This size is indeed not on
fixed by the thickness of the slab, but also depends on
local arrangement of the defects.

D. Transitions of texture in the thicker slabs

In order to look if another packing has a lower energy
the thickness increases, we have considered three disk
contact, as shown in Fig. 18. Note the respective radius
the disks, (a1 ,a2 ,a3)5(xv1 ,xv2 ,xv3), and define an inter-
face energy for the triangleT ~whose vertices are the cente
of the disks! by

s t~x,v1 ,v2 ,v3!5

(
i 5$1,2,3%

u ix
2v i

2se~x,v i !

2St~x,v1 ,v2 ,v3!
, ~16!

FIG. 18. The vertices of three disks in contact defines
shaded triangleT.
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6746 PRE 62CHRISTOPHE BLANC AND MAURICE KLEMAN
where u i is defined in Fig. 18, andSt is the area of the
triangle. From geometric considerations, we obtain the
lowing relations~with all the permutations$1,2,3%):

St~x,v1 ,v2 ,v3!5x2Av1v2v3~v11v21v3!, ~17!

cosu1512
2v2v3

~v11v3!~v11v2!
, ~18!

sinu15
2Av1v2v3~v11v21v3!

~v11v2!~v11v3!
. ~19!

Any triangleT(v1 ,v2 ,v3) tiles the plane, but this does no
insure that the disk angles that it carries adjust correctly
perfect full disks in the tiling, except for some special t
angles and tilings as in Fig. 19. However, any tiling with
single triangle of lowests t which readjusts the disk angle
gives an optimal packing of lowest interface energySe
5s t .

We have numerically determined the absolute minim
of s t for (v1 ,v2 ,v3)PD3, and we give the resulting tri
angle as a function of the thicknessx in Fig. 20. This latter is
equilateral (u i5p/3) for x,1040, and isosceles above th
value ~we give the values taken by the larger angleu2 as a
function of x). It therefore shows that the lattice HL is th
optimal packing at least up tox51040. Note that this
method does not rigorously prove that the HL is no long
the optimal packing above this value, but it can be sho
that other textures have a lower energy in the neighborh

FIG. 19. In the lattice HL1, the radiusr 4 of the small circles is
given by r 45b1r 1.

FIG. 20. Assembly of three disks in contact defining the trian
T of minimal interface energys t according to the thicknessx.
l-

o

r
n
d

of this value. For example, let us compare the free ener
of the lattices HL and HL1. Figure 19 shows that the radiu
r 45xv4 of the smallest disk in a cell of HL1 is related geo-
metrically to the radiusr 15xv1 of the large disks by the
Apollonius numberb1'0.1547 . . . :

v45S 2

A3
21D v15b1v1 . ~20!

Then applying Eq.~13! in an unit cell, the tiling HL1 of
lowest energy is obtained when

v15S 112b1

2F1x~112b1
4!
D 1/3

. ~21!

In Fig. 21 we reported the variation ofSe for the two lat-
tices, which shows that HL1 is favored beyondxc,251071
(hc,2'290– 340mm!. Note that this last result is rather con
sistent with the experimental data~see Sec. II!.

In HL2, represented in Fig. 22, the radius of the ne
generation isxb2v1, where

b25
324/A3

11
. ~22!

The radius of the larger disksxv1 is given by Eq.~13!:

v15S 112b116b2

2F1x~112b1
416b2

4!
D 1/3

. ~23!

e

FIG. 21. Evolution ofSe(HL) ~a! andSe(HL1) ~b! . The two
curves intersect atxc,1'1071.

FIG. 22. Local arrangement of the lattice HL2.
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The comparison betweenSe(HL1) and Se(HL2) then pro-
vides a third critical thickness xc,3'3629 (hc,3
'1000– 1150mm! which also agrees with the observed e
perimental thickness (hc,3'800– 1000mm! for which the
third generation of defects appears locally, although so
what larger.

IV. DISCUSSION

We have shown by the above approach that the form
the energy of asingle defectexplains the qualitative feature
of the texturespresent in thick slabs ofLa phase. The values
F'0.065 andal'0.3mm used in Sec. III were obtained i
Ref. @15# from the measurement of the first critical thickne
hc,1'35– 40mm and the geometrical parameters of the c
responding defects. The use of the same values in Sec
also provided a second critical thicknesshc,2'300 mm for
which HL becomes unstable and is replaced by a less o
nized texture. Locally the texture HL1 is favored up tohc,2
'1000mm, and beyond this third critical value HL1 changes
to HL2 which has a lower energy. The corresponding tran
tions are experimentally observed, which indicates that
actual form of the energy is close to the expression given
Eq. ~4!.

Concerning the dynamic of formation of the textures, s
eral points require further study. First, we have not explain
how defects form from the homeotropic slab. In the case
SmA slabs studied by Fournieret al. @8#, the appearance of
single defect is preceded by a SmA-isotropic interface insta-
bility similar to the Mullins-Sekerka mechanism@19#, that
helps its nucleation. In a lateral geometry@15# and with a
slow growth~'1 mm min21), we have not observed such
large deformation of theL3 /La interface, but nevertheles
observed the appearance of the defects, which suggests
the energy barrier is lower in this case. However, if we
sume that earlier stages of the nucleation are still descr
by Fig. 5, withv increasing continuously toward its equilib
rium value, the corresponding barrier energyEb ~estimated
from Fig. 15! is rather large compared tokT ~the unit ofEt
is indeeda2pKl'103kT with the usual ordersK'kT/d
andl'd, whered is the thickness of the smectic layers!. We
think that two phenomena actually strongly decreaseEb ,
which is mainly due to the curvature of the layers@the term
xv in Eq. ~4!#. First, if the orientation of the layers increas
continuously from 0 to its equilibrium valueu0 at theL3-La
interface, the large bending energy of the layers associ
with the focal conics domains in the nucleating defect can
avoided~see Fig. 23!. Second, any irregularity at the glas
substrate tends to deform the layers, and therefore stro
decreases the barrier. Such irregularities could be very
cient seeds for the defects which move easily once form

A second interesting point is the dynamical formation
the hexagonal lattices. Indeed we think that the spontane
organization of defects in the thin slabs is due to the e
tence of a finite range of sizes for the defects, and that
situation here is very different from the organizations
single-sized disks in the plane which would form rando
close packings. The continuous variation of size could h
to overcome some geometric lockings during the format
of the lattices. Such rearrangements should, however, be
ited to small thicknesses, which correspond to not too la
e-
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values for the range of variationD of the defect size. For
larger thickness, the formation of local lattices HL1 and HL2
is not expected to come from a global rearrangement of
defects, but rather from the nucleation of defects inside
interstices. The typical size of the largest defects rema
close tov0, because this value corresponds to the minim
interface energySe at the scale of the disk. The character
tic size of the interstices between three large disks in con
is therefore given byb1v0, and enters the rangeD when the
thickness increases, which permits the appearance of a d
inside the interstice. The same mechanism is also expe
for other generations which appear in smaller empty int
stices at larger thicknesses.

V. CONCLUSION

In this work, we discussed the arrangement of defe
present in a slab of smectic phase in contact with two para
interfaces and different boundary conditions. The toric fo
conics domains occurring above a first critical thickne
form a regular hexagonal lattice in thin slabs. The size of
defects is fixed not only by the thickness but also depends
the local order, i.e., the deviations from hexagonal order,
is therefore different in grain boundaries. When the thickn
increases, the regular lattices are unstable and become d

FIG. 24. Comparison of the energy of a single defect given
Eq. ~4! ~plain lines! and Eq.~A1! ~dashed lines! for different thick-
nessesx (C50.59, a530, andF50.065).

FIG. 23. Two main mechanisms are expected to lower the
ergy barrier of the nucleation of one defect: the penalty due to
curvature energy can be reduced, first, by an anchoring at an
smaller thanu0 at theL3 /La interface, and second by the presen
of irregularities at the glass substrate which favors the tilt of
layers and the nucleation of the defects.
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dered on a large scale. We have shown that regular as
blies are nevertheless locally observed. In these textures
fects form the first stages of Apollonius packings of disks
a plane. We have modeled a defect by a disk in the pla
and computed its surface energy. The minimization of
total surface energy of assemblies of noncongruent disks
produces the main features of the textures, and explains
presence of different transition thicknesses.

We have also shown that the main type of saturating te
for the energy of a single defect~deformation of the inter-
face, dilation or energy of anchoring! has the same depen
-
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ys

.

hy
m-
e-

e,
e
e-
he

m

dence in the geometrical parameters of the defects. We th
fore expect that similar behaviors should be observed
other smectic systems.

APPENDIX

In this appendix, we compare the energy of the def
sketched in Fig. 5 to the polynomial expression given in E
~4!. The exact free energy~in units ofa2pKl) of the defects
sketched in Fig. 5 is given by@15#
as
ts
he
er
Et~x,v!52Fx2 tan2v12x2
tanv2v

sinv
tan2v1

2 tanvx

a H @ ln~ax tanv!22#~u022v!2E
p/22u0

p/222v

ln coswdwJ
1

x tanv

a
@ ln~ax tanv!21#@sin22v~ tan21v2tan212v!1sin2u0 /tanu0#1Cx tanv, ~A1!

where the first and second terms represent the gain of energy at theLa-L3 interface and the energy of the conical wall, where
the other terms account for the curvature energy of the layers sketched in Fig. 5.C is a constant of order unity which accoun
for the energy of the straight line defect@15#, and we have takenl as a value of the cutoff lengths which appear in t
neighborhood of the two line defects. Figure 24 shows that the main features ofEt are correctly described by the much simpl
expression given in Eq.~4!.
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